
Voyager Interoperability Guide

Version 1.1 for Voyager 8.0

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

Table of Contents
Introduction ... 3

Audience .. 3
Prerequisites ... 3
Overview .. 3
Contacting Technical Support ... 3

The Distributed Data Model .. 4
Primitive Data Types ... 4
Structured Types .. 4
Type Interoperability ... 4

Serialization by Language and Platform .. 7
Serialization for Java SE, CDC, and Android .. 7
Serialization for Java CLDC .. 7

Custom serialization in the serializable class ... 8
Custom serialization in a separate class ... 10

Serialization for C# ... 10
Configuring Voyager Serialization ... 10
Serialization Differences .. 11

Primitive Wrapper Classes ... 11
Summary .. 12

Table of Figures

Figure 1 Type Compatibility for Interoperability..6
Figure 2 Consumer class attributes..8
Figure 3 Consumer class writeClassDefinition()...8
Figure 4 Consumer class writeObject()...9
Figure 5 Consumer class newInstance()..9
Figure 6 Consumer class newInstance() with helper constructor..9

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

Introduction
Audience
This document addresses distributed system designers, and implementers. The early
sections describe Voyager’s features supporting applications whose parts execute in
diverse runtime environments, frequently on heterogeneous hardware. The later sections
discuss interoperability of particular languages, runtime environments, and platforms.

Prerequisites
Voyager Interoperability Guide assumes a basic working knowledge of Java and/or .NET
and Voyager, as well as experience developing network applications spanning multiple
runtime environments.

Overview
Elements of an application operating in differing runtime environments connected by a
network encounter numerous issues. The first few sections discuss the data types
common to Java (SE, CDC, CLDC, and Android) and C#. The following sections discuss
how Voyager serializes the data types for transfer over the network for each of the
supported runtime environments, including tuning Voyager for good performance.

Contacting Technical Support
Recursion Software welcomes your problem reports, and appreciates all comments and
suggestions for improving Voyager. Please send all feedback to the Recursion Software
Technical Support department via the email or phone at psupport@recursionsw.com or
by calling (972) 731-8800.

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

- 3 -

mailto:psupport@recursionsw.com

The Distributed Data Model
Successful exchange of messages among programs executing on differing platform
architectures, runtimes, and written in differing languages requires all elements of the
distributed application to speak a common language. Voyager solves this problem by
defining a subset of Java, C#, and VB data types that Voyager is able to move over the
network and represent in all environments. The two parts of the data model are the
primitive types and the structured types.

Primitive Data Types
The primitive data types include integral numbers, floating point numbers, boolean,
character, character string, and single and jagged arrays of these types.

Structured Types
The structured types include the following.

classes whose fields are themselves primitive or serializable class types. Classes
that are serialized among environments must have field names that match exactly in
name (case included) in each codebase.

maps, i.e., a collection of key-value pairs where each key is associated with a value.

collections, i.e., a variable length sequence of objects.

Type Interoperability
The supported interoperable types are shown in the following table.

Type Description Java SE, CDC, &
Android Java CLDC C#

A value of a reference type
that points to nothing.

null null null

True or False in 1 bit java.lang.Boolean, java.lang.Boolean, bool

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

- 4 -

Type Description Java SE, CDC, &
Android Java CLDC C#

boolean boolean

8 bit integral value java.lang.Byte, byte
(signed)

java.lang.Byte, byte
(signed)

byte
(unsigned)

16 bit signed integral value java.lang.Short,
short

java.lang.Short,
short

short

32 bit signed integral value java.lang.Integer, int java.lang.Integer, int int

64 bit signed integral value java.lang.Long, long java.lang.Long, long long

IEEE floating point number in
64 bits

java.lang.Float, float java.lang.Float, float float

IEEE floating point number in
128 bits

java.lang.Double,
double

java.lang.Double,
double

double

Unicode character in 16 bits java.lang.Character,
char

java.lang.Character,
char

char

Sequence of Unicode
characters

java.lang.String java.lang.String string or
System.String

A map of key object to value
object pairs

java.util.HashMap,
java.util.Hashtable

java.util.Hashtable System.Colle
ctions.Hashta
ble

A variable length, single java.util.ArrayList, java.util.Vector System.Colle

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

- 5 -

Type Description Java SE, CDC, &
Android Java CLDC C#

dimension, ordered list of
Object

java.util.Vector ctions.ArrayL
ist

A calendar date java.util.Date java.util.Date DateTime

A “jagged” array of any of the
supported types.

[] [] []

Any serializable object java.io.Serializable,
com.recursionsw.ve.
VSerializable,
com.recursionsw.lib.
io.ISerializable, or
com.recursionsw.lib.
io.ISerializationSurr
ogate implementor

com.recursionsw.ve
VSerializable,
com.recursionsw.lib.
io.ISerializable, or
com.recursionsw.lib.
io.ISerializationSurr
ogate implementor,

Object tagged
with
[Serializable]

Voyager proxies com.recursionsw.ve.
Proxy

com.recursionsw.ve.
Proxy

recursionsw.v
oyager.Proxy

Figure 1 Type Compatibility for Interoperability

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

- 6 -

Serialization by Language and Platform
Distributed applications typically need to share complex application objects. Passing a
complex object to another (remote) process is termed serialization, and receiving a
complex object from a (remote) process is termed deserialization. The classes (types) that
are passed back and forth are often termed data transfer objects, or DTO’s. Data transfer
objects are typically defined to contain fields (usually but not always consisting of
primitive types), but implement no business logic. They often are also marked with
special code that is used for serialization and deserialization.

Voyager implements two versions of object serialization for Java SE 1.4, CDC, and
Android, and a single version of object serialization for all other environments. Native
Java object serialization is supported for the JSE, CDC, and Android environments.
Hessian serialization is also supported on these platforms and is the only serialization
mechanism supported in CLDC and C#. When developing a cross-platform application
that will run in either a CLDC or C# environment, Hessian serialization is required.

Serialization for Java SE, CDC, and Android
Voyager running in a Java SE, CDC, or Android environment defaults to serialization
based on the Hessian 2 specification. If a class requires custom serialization, the custom
serialization should be implemented using the Hessian mechanisms. A configuration
option allows selection of Java serialization, as show below.

Serialization for Java CLDC
Voyager running in a Java CLDC environment implements serialization based on the
Hessian 2 specification. Because the Java CLDC language omits support for
introspection, there is no native implementation of serialization. Two features of Voyager
for Java CLDC enable remote invocation of methods on objects in this environment:
generation of static proxy classes and an associated metadata class (see the discussion of
generating source proxies in the Voyager Core Developer's Guide); and custom
serialization for objects that move to and from the Java CLDC environment. Voyager
supports two implementation patterns for the custom serializers. The first requires the
class to be serialized to implement the com.recursionsw.lib.io.ISerializable
interface. The second requires the class to be serialized implement the
com.recursionsw.ve.VSerializable interface declaring no methods (a tag interface),
and creation of a separate class that implements the
com.recursionsw.lib.io.ISerializationSurrogate interface.

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

- 7 -

The following mechanisms for custom serialization also operate in the Java SE and Java
CDC platforms, allowing a single Java source file to be used for all three runtime
environments.

Custom serialization in the serializable class

A class containing its own custom serialization must implement the
com.recursionsw.lib.io.ISerializable interface, and it must declare a public
constructor with no arguments. The source file for such a class can be compiled and used
in all the Java-based environments: Java SE, CDC, CLDC, and Android. That is, a single
source code tree can be used for Voyager serializable objects running in Java CLDC,
Voyager running in Java SE, Voyager running in Java for Android, and Voyager running
in Java CDC.

The ISerializable interface declares three methods, detailed in the following
paragraphs.

Looking the examples.space.Consumer class, found in the Space example, changing it
from a proxied class to a serializable class requires implementing the ISerializable
interface and implementing the ISerializable interface's methods.

Figure 2 Consumer class attributes

The writeClassDefinition() method, which has a single parameter of type
ClassDefinitionBuilder, provides to the serialization code the class's attribute names
and types. The order in which the attributes are added to ClassDefinitionBuilder
defines the sequence in which the other two methods read or write the attribute values.
Serializing the Consumer class requires serializing the name and output attributes. The
String provided for the field name must exactly match the field name in the code. As a
matter of good practice the attributes should be added in alphabetical order.

Figure 3 Consumer class writeClassDefinition()

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

- 8 -

public class Consumer implements IConsumer, ISerializable
{

private String name;
private Vector output = new Vector();
// …

}

Public void writeClassDefinition(ClassDefinitionBuilder builder)
{

builder.addField(“name”, String.class);
builder.addField(“output”, Vector.class);

}

The writeClassDefinition() method is called by creating a temporary instance of the
class using the default constructor, and the ClassDefinitionBuilder returned is
cached.

The writeObject() method is invoked to serialize an instance. The parameter, an
IObjectOutput, implements methods to serialize the supported types, e.g.,
writeString(), writeInt(), writeObject(), etc. As stated previously, the attributes
must be written to the object output in the same order they are added in
writeClassDefinition().

Figure 4 Consumer class writeObject()

As the inverse of writeObject(), the newInstance() method is invoked to deserialize
an instance. The parameter, an IObjectInput, implements methods to deserialize the
supported types, e.g., readString(), readInt(), readObject(), etc. The attributes
must be read in the same order as they are added in writeClassDefinition().

Figure 5 Consumer class newInstance()

If a class contains final attributes that need to be serialized, the newInstance() method
can be implemented in terms of a constructor. This pattern is also strongly recommended
for class hierarchies.

Figure 6 Consumer class newInstance() with helper constructor

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

- 9 -

public void writeObject(IObjectOutput out) throws IOException
{

out.writeString(name);
out.writeObject(Object);

}

public Object newInstance(IObjectInput in) throws IOException
{

Consumer aConsumer = new Consumer();
aConsumer.name = in.readString();
aConsumer.output = in.readObject();
return aConsumer;

}

public Consumer(IObjectInput in) throws IOException
{

name = in.readString();
output = in.readObject();

}

public Object newInstance (IObjectInput in) throws IOException
{

return new Consumer(in);
}

Custom serialization in a separate class

Implementing custom serialization using a class external to the class being serialized
requires that the serializable class implement VSerializable and have a default
constructor. The class doing the serialization, referred to as the surrogate class, must
implement com.recursionsw.ve.ISerializationSurrogate, and the surrogate class
name must be the name of the serializable class with “Serialization” appended. For
example, if the name of the serializable class is com.foo.Joe, then the name of the
surrogate class must be com.foo.JoeSerialization. The methods declared in
ISerializationSurrogate perform the same operations as the methods declared in
ISerializable. The ISerializationSurrogate method writeClassDefinition() is
identical to Iserializable’s writeClassDefinition() method. The
ISerializationSurrogate method readObject() is equivalent to ISerializable’s
newInstance() method, but adds the serializable object as an additional parameter. The
ISerializationSurrogate method writeObject() is equivalent to Iserializable’s
writeObject() method, but adds the serializable object as an additional parameter. The
rule that all three methods must deal with the attributes in the same sequence applies to
ISerializationSurrogate’s methods.

Serialization for C#
Voyager running in C# .Net environment implements serialization based on the Hessian 2
specification. The developer need only tag the class with
System.SerializableAttribute ([Serializable]), which uses the default
serialization semantics. Fields that should not be serialized may be tagged with
[NonSerialized]. IDeserializationCallback is also supported.

Configuring Voyager Serialization
Voyager running in a Java SE, CDC, or Android environment offers configuration
options related to serialization. None of the other environments offer or require
configuration of the serialization component.

The default serialization implementation can be changed using any of the following
configuration mechanisms. If the Voyager being started will exchange messages with
Voyager CLDC or Voyager C#, changing the default will improve performance.

Setting the Voyager property
com.recursionsw.ve.messageprotocol.vrmp.serializationdefault to either

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

- 10 -

“hessian” or “java”. The comparison is insensitive to letter case, i.e.,
“Hessian” or “HESSIAN” also work. This approach is appropriate when starting
Voyager from a command line or IDE launch configuration.

Adding any of the following property settings in the Voyager property file read at
startup time. This approach works well when starting up Voyager as a server using
the provided startup script file.

1.com.recursionsw.ve.messageprotocol.vrmp.VrmpSerialization.sel
ectHessianDefaultSerialization
2.com.recursionsw.ve.messageprotocol.vrmp.VrmpSerialization.sel
ectHessianDefaultSerialization=true
3.com.recursionsw.ve.messageprotocol.vrmp.VrmpSerialization.sel
ectJavaDefaultSerialization=false

Invoking any of the following methods.

1.com.recursionsw.ve.messageprotocol.vrmp.VrmpSerialization.sel
ectHessianDefaultSerialization()
2.com.recursionsw.ve.messageprotocol.vrmp.VrmpSerialization.sel
ectHessianDefaultSerialization(true)
3.com.recursionsw.ve.messageprotocol.vrmp.VrmpSerialization.sel
ectJavaDefaultSerialization(false)

Serialization Differences
The Hessian serialization differs in the following ways from the default Java
serialization.

Primitive Wrapper Classes
Java serialization of wrapper classes for primitive types, e.g., Integer, Boolean,
Float, etc., retains reference equality after deserialization, while Hessian serialization
always deserializes the wrapper classes for primitive types into unique instances. As an
example, consider the following code sequence.

public class Test {
 /** A method **/
 public boolean dupTypes(Integer p1, Integer p2)
 {
 return p1 == p2;
 }
}

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

- 11 -

public class Invoker {
void caller()
 {
 Test t = (Test)Factory.create(“Test”, “//remotehost:8000”);
 Integer i = new Integer(0);
 t.dupTypes(i, i);
 }
}

The code in Invoker's caller() method constructs a remote instance of the Test
class, then invokes the dupTypes() method. If the invocation is serialized using Java's
default serialization the dupTypes() call will return true,but if Hessian serialization
is used dupTypes() will return false. This is the case for the following classes.

java.math.BigDecimal
java.lang.Boolean
java.lang.Byte
java.lang.Character
java.util.Date
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.Short
java.lang.String

Summary
Serializable classes moving to or from a Java CLDC environment require implementation
of either one of two custom serialization mechanisms. In all other Voyager runtime
environments the platform’s native serialization suffices for most serializable classes.
Figure 1 Type Compatibility for Interoperability lists the standard types supported by
Voyager when a serializable type’s instances will move among different runtime
environments. Finally, the Voyager configuration property relevant to interoperability
and serialization was discussed, including how and when the default configuration should
be changed.

Copyright 2007 - 2011 Recursion Software, Inc.
All Rights Reserved

- 12 -

	Introduction
	Audience
	Prerequisites
	Overview
	Contacting Technical Support

	The Distributed Data Model
	Primitive Data Types
	Structured Types
	Type Interoperability

	Serialization by Language and Platform
	Serialization for Java SE, CDC, and Android
	Serialization for Java CLDC
	Custom serialization in the serializable class
	Custom serialization in a separate class

	Serialization for C#

	Configuring Voyager Serialization
	Serialization Differences
	Primitive Wrapper Classes

	Summary

